Expression and phosphorylation of the na-pump regulatory subunit phospholemman in heart failure.

نویسندگان

  • Julie Bossuyt
  • Xun Ai
  • J Randall Moorman
  • Steven M Pogwizd
  • Donald M Bers
چکیده

Intracellular [Na] is approximately 3 mmol/L higher in heart failure (HF; in our arrhythmogenic rabbit model), and this can profoundly affect cardiac Ca and contractile function via Na/Ca exchange and Na/H exchange. Na/K-ATPase is the primary mechanism of Na extrusion. We examine here in HF rabbits (and human hearts) expression of Na/K-ATPase isoforms and phospholemman (PLM), a putative Na/K-ATPase regulatory subunit that inhibits pump function and is a major cardiac phosphorylation target. Na/K-ATPase alpha1- and alpha2-isoforms were reduced in HF in rabbit ventricular homogenates (by 24%) and isolated myocytes (by 30% and 17%), whereas alpha3 was increased (50%) in homogenates and decreased (52%) in myocytes (P<0.05). Homogenate Na/K-ATPase activity in left ventricle was also decreased in HF. However, we showed previously that Na/K-ATPase characteristics in intact ventricular myocytes were unaltered in HF. To reconcile these findings, we assessed PLM expression, phosphorylation, and association with Na/K-ATPase. PLM coimmunoprecipitated with Na/K-ATPase alpha1 and alpha2 in control and HF rabbit myocytes. PLM expression was reduced in HF by 42% in isolated rabbit left ventricular (LV) myocytes, by 48% in rabbit LV homogenates, and by 24% in human LV homogenate. The fraction of PLM phosphorylated at Ser-68 was increased dramatically in HF. Our results are consistent with a role for PLM analogous to that of phospholamban for SR Ca-ATPase (SERCA): inhibition of Na/K-ATPase function that is relieved on PLM phosphorylation. So reduced Na/K-ATPase expression in HF may be functionally offset by lower inhibition by PLM (because of reduced PLM expression and higher PLM phosphorylation).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phospholemman: a new force in cardiac contractility.

The control of intracellular Na levels has long been known to be a crucial part of the regulation of cardiac contractility and the treatment of heart failure. Cardiac glycosides have been used to improve the symptoms of heart failure since William Withering published trials of a foxglove extract obtained from a gypsy woman in the late 1700’s. The active ingredients, digitalis and digoxin, were ...

متن کامل

Novel regulation of cardiac Na pump via phospholemman.

As the only quantitatively significant Na efflux pathway from cardiac cells, the Na/K ATPase (Na pump) is the primary regulator of intracellular Na. The transmembrane Na gradient it establishes is essential for normal electrical excitability, numerous coupled-transport processes and, as the driving force for Na/Ca exchange, thus setting cardiac Ca load and contractility. As Na influx varies wit...

متن کامل

Phospholemman and the cardiac sodium pump: protein kinase C, take a bow.

In excitable tissues, the activity of the plasmalemmal sodium/potassium ATPase (Na/K pump) is vital for the maintenance of normal electrical activity and ion gradients. In cardiac muscle, the transsarcolemmal sodium (Na) gradient established by the Na/K activity is essential not only for generating the rapid upstroke of the action potential but also for driving a number of ion exchange and tran...

متن کامل

Cardiac hypertrophy in mice expressing unphosphorylatable phospholemman

AIMS Elevation of intracellular Na in the failing myocardium contributes to contractile dysfunction, the negative force-frequency relationship, and arrhythmias. Although phospholemman (PLM) is recognized to form the link between signalling pathways and Na/K pump activity, the possibility that defects in its regulation contribute to elevation of intracellular Na has not been investigated. Our ai...

متن کامل

Phospholemman phosphorylation alters its fluorescence resonance energy transfer with the Na/K-ATPase pump.

Phospholemman (PLM) or FXYD1 is a major cardiac myocyte phosphorylation target upon adrenergic stimulation. Prior immunoprecipitation and functional studies suggest that phospholemman associates with the Na/K-pump (NKA) and mediates adrenergic Na/K-pump regulation. Here, we tested whether the NKA-PLM interaction is close enough to allow fluorescence resonance energy transfer (FRET) between cyan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 97 6  شماره 

صفحات  -

تاریخ انتشار 2005